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Abstract
We study some quantum systems described by noncanonical commutation
relations formally expressed as [̂q, p̂] = ih̄(̂I + χ̂ĤHO), where ĤHO is the
associated (harmonic-oscillator-like) Hamiltonian of the system and χ̂ is a
Hermitian (constant) operator, i.e. [ĤHO, χ̂ ] = 0̂. In passing, we also consider
a simple (χ̂ = 0̂ canonical) model, in the framework of a relativistic Klein–
Gordon-like wave equation.

PACS numbers: 03.65.Pm, 02.20.Sv, 12.60.Jv

1. Introduction

This paper deals with some possible applications of certain harmonic-oscillator-like models
to particle physics. From the beginning we should mention that the spirit of this paper is
rather formal and analytical. Since the beginning of modern physics, an enormous amount of
work has been produced regarding the harmonic oscillator: its various forms and applications
to quantum and classical mechanics. It is clear to everyone that the concept of harmonic
oscillator is a fundamental source to understand many concrete problems in physics [1].
Therefore, we content ourselves by presenting certain mathematical relations between deep-
seated symmetries in which some specific kinds of harmonic oscillators are involved. Hence,
it is not presently our goal to give explicit numerical solutions to the problems we address,
since they are available (under various concepts) in the literature.

The main premise of this paper is to study some possible quantum systems with
noncanonical commutation relations of the form

[̂qi, p̂j ] = ih̄δij (̂I + χ̂ĤHO), (1)

where ĤHO is the harmonic-oscillator-like Hamiltonian (whose specific form depends on
the concrete nature of the treated system) and χ̂ is a Hermitian (constant) operator, i.e.
[ĤHO, χ̂ ] = 0̂.

In section 2, we present a particular type of harmonic oscillator in (1 + 1)-dimensions
as an underlying device in its connection with supersymmetry and quark confinement.
Sections 3 concerns some corresponding generalizations to (3 + 1)-dimensions.

1751-8113/07/4914877+10$30.00 © 2007 IOP Publishing Ltd Printed in the UK 14877
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2. A harmonic oscillator in (1 + 1)-dimensions

We begin by considering a quantum system consisting of a particle of mass m0 moving in a
(1 + 1)-dimensional spacetime described by the (noncanonical) ‘coordinate and momentum’
realizations:

Q̂ ≡ c

ω

√
1

2h̄m0ω
(m0ωσ2q̂ + σ1p̂), P̂ ≡ h̄ω

c

√
1

2h̄m0ω
(σ2p̂ − m0ωσ1q̂), (2)

where σj are Pauli matrices. In equation (2), the operators q̂, p̂ are the usual canonical
coordinates, so that [̂q, p̂] = ih̄̂I . Here Q̂ and P̂ are Hermitian and formally traceless
operators: Q̂† = Q̂, P̂ † = P̂ and Tr(Q̂) = Tr(P̂ ) = 0. Next, we determine Q̂P̂ and P̂ Q̂:

Q̂P̂ = 1

2
(̂qp̂ − p̂q̂) +

1

ω
σ1σ2

(
p̂2

2m0
+

m0ω
2

2
q̂2

)
≡ ih̄

2
Î +

i

ω
σ3ĤHO = iσ3

ω
ĤSS, (3)

P̂ Q̂ = −
(

ih̄

2
Î +

i

ω
σ3ĤHO

)
= −i

σ3

ω
ĤSS, (4)

in which ĤHO ≡ (1/2) (p̂2/m0 + m0ω
2q̂2) and ĤSS is the well-known supersymmetric

Hamiltonian for the harmonic oscillator [2]. Thus,

[Q̂, P̂ ] = ih̄

(̂
I +

(
2σ3

h̄ω

)
ĤHO

)
= −2iσ3

ω
ĤSS, {Q̂, P̂ } = 0̂, (5)

where χ̂ = 2σ3/h̄ω and σ3 may be interpreted as a ‘charge operator’. Furthermore,

Q̂2 = c

h̄ω3

(
p̂2

2m0
+

m0ω
2

2
q̂2 +

h̄ω

2
σ3

)
= c

h̄

(
1

ω

)2 (
1

ω

)
ĤSS,

(6)

P̂ 2 = h̄ω

c2

(
p̂2

2m0
+

m0ω
2

2
q̂2 +

h̄ω

2
σ3

)
= h̄ω

c2
ĤSS,

from which we get

ĤSS ≡ 1

2
h̄ω

{(
c

h̄ω

)2

P̂ 2 +

(
ω

c

)2

Q̂2

}
= p̂2

2m0
+

1

2
m0ω

2q̂2 +
h̄ω

2
σ3. (7)

Additionally, from equations (6) it follows that

[ĤSS, Q̂] = [Q̂2, Q̂] = 0̂, [ĤSS, P̂ ] = [P̂ 2, P̂ ] = 0̂, (8)

which closes the algebra and confirms that the (positive-definite) Hamiltonian HSS is invariant
under this supersymmetry.

Finally,

[ĤHO, Q̂] = −i
c2

ω
P̂ , [ĤHO, P̂ ] = iω

(
h̄ω

c

)2

Q̂. (9)

From equation (5), the operator Ĥ ≡ (2σ3/h̄ω) ĤHO incorporates negative-energy
eigenvalues into the system. In fact, the structure of this equation reminds us of the
Zitterbewegung (ZB) phenomenon (as a result of the eventual interference between positive-
and negative-energy eigenstates) extensively studied by Barut [3] amongst others. On the
other hand, note that, from the point of view of SUSYQM, Q̂ and P̂ are proportional to SUSY
charges [4].

Thus, we have encountered three non-equivalent Hamiltonians: ĤHO, ĤSS (boson–
fermion symmetry) and Ĥ (particle–antiparticle symmetry). In principle, each one of them
refers to a different (in nature) quantum system.
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2.1. Modeling ‘quark confinement’ in (1 + 1)-dimensions

In (1 + 1)-dimensions, some authors [5–11] have argued that a modification of the usual
canonical coordinates q̂, p̂ into a set of noncanonical coordinates (say) Q̂, P̂ , could lead to a
modification of the usual commutation relation, similar to the first equation (5), into the form

[Q̂, P̂ ] = ih̄(̂I + χĤ ), (10)

where χ is just a parameter with dimensions of [Energy]−1. With this (oversimplified) scheme
it is possible to attempt to give some hints in order to describe new phenomena, which appear,
for instance, in high energy physics and mesoscopic systems. In [5], it is shown that for a
quantum system fulfilling commutation relation (10) space discreteness is compatible with
Lorentz transformations. This fact was explicitly related to atomic phenomena. In [6, 7],
a mass spectrum for a subset of elementary particles was obtained from equation (10), with
Ĥ being the Hamiltonian of the harmonic oscillator and applied for energies of the order of
GeV–TeV (1010–1012 eV). In [8] it was also shown that, for the free-particle Hamiltonian,
equation (10) reproduces space quantization. This result can be related to quark confinement
phenomena. Qualitatively, in equation (10) as χ → ∞, the theory becomes ‘asymptotically
free’ since Ĥ ∝ p̂2 . On the other hand, if χ → 0, Ĥ ∝ q̂2, the parameter 1/χ corresponds
to a strong coupling constant: ‘quark confinement in (1 + 1)-dimensions’. Furthermore, in
[9, 10] mathematical aspects of equation (10) were studied. In [11], it was found that charge
discreteness in mesoscopic circuits can be mathematically formulated with commutation
relations similar to that of equation (10) between charge and current. This theory becomes
related to the descriptions of phenomena like persistent current in a ring of inductance L, i.e.,
Coulomb blockage phenomena in a pure capacitor design.

3. Some generalizations in (3 + 1)-dimensions

At least three straightforward (non-equivalent) quantum models can be visualized in (3 + 1)-
dimensions.

3.1. Supersymmetry algebra

By somehow mimicking the (1+1)-dimensional case, we address a quantum system consisting
of a spin-1/2 particle of mass m0 moving in a (3 + 1)-dimensional spacetime described by the
noncanonical ‘coordinate and momentum’ Hermitian operators

Q̂ ≡ c

ω

√
1

6h̄m0ω
(m0ωα · q̂ + iβα · p̂), P̂ ≡ h̄ω

c

√
1

6h̄m0ω
(α · p̂ − m0ω iβα · q̂), (11)

where β, αj (j = 1, 2, 3) are Dirac matrices. The operators q̂i , p̂j are the usual canonical
coordinates: [̂qi, p̂j ] = ih̄̂I δij . Here Q̂ and P̂ are formally traceless operators: Tr(Q̂) =
Tr(̂P) = 0. Next, we determine Q̂ P̂ and P̂ Q̂:

Q̂ P̂ = 1

2
× 1

3
(̂q · p̂ − p̂ · q̂) +

i

3ω
β ×

{
p̂2

2m0
+

m0ω
2

2
q̂2 +

2ω

h̄
βS · L

}
≡ ih̄

2
Î +

(
iβ

3ω

)
ĤSS,

(12)

where now

ĤSS ≡ ĤHO +
2ω

h̄
βS · L = p̂2

2m0
+

m0ω
2

2
q̂2 +

2ω

h̄
βS · L (13)
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is the Dirac oscillator [12–17], except for the additive term 3m0c
2, in which ĤSS picks up a spin–

orbit term, with L = q̂×p̂ the orbital angular momentum of m0 and Sk≡ (1/2) �k = (1/2) αiαj

is the spin of m0, with i, j, k cyclically. Correspondingly,

P̂Q̂ = − ih̄

2
Î −

(
iβ

3ω

)
ĤSS. (14)

Therefore, we now get

[Q̂, P̂] = ih̄

(̂
I +

(
2

3

β

h̄ω

)
ĤSS

)
, {Q̂, P̂} = 0̂, (15)

together with

[ĤHO, Q̂j ] = −i
c2

ω
P̂ j , [ĤHO, P̂ j ] = iω

(
h̄ω

c

)2

Q̂j ,

in which χ̂ = 2β/3h̄ω and β may be interpreted as a ‘charge operator’. From its definition,
Ĥ ≡ −(3/2)βĤSS incorporates negative-energy eigenvalues into the system. In fact, the
structure of the first equation (15) reminds us again of the Zitterbewegung (ZB) phenomenon.
On the other hand, note that, from the point of view of SUSYQM, Q̂ and P̂ are SUSY charges
[4]:

Q̂2 = c

3h̄ω3
ĤSS, P̂2 = h̄ω

3c2
ĤSS,

together with the second equation (15). Here,

ĤSS ≡ 3

2
h̄ω

{( c

h̄ω

)2
P̂2 +

(ω

c

)2
Q̂2

}
= p̂2

2m0
+

m0ω
2

2
q̂2 +

2ω

h̄
βS · L. (16)

Furthermore,

[ĤSS, Q̂] = [Q̂2, Q̂] = 0̂, [ĤSS, P̂] = [̂P2, P̂] = 0̂, (17)

which closes the algebra and confirms that ĤSS is invariant under this supersymmetry. We
note again that HSS � 0. That is, the Hamiltonian has only non-negative eigenvalues. Let us
suppose that |Ea〉 is an eigenstate of HSS with positive eigenvalue Ea > 0. Then it follows
that |Ea〉′ ∝ Q̂|Ea〉 is also an eigenstate with the same positive eigenvalue. Relations (17),
together with {Q̂, P̂} = 0̂, are the graded algebra of a supersymmetric system consisting of a
relativistic spin-1/2 particle interacting with an electric classical field [28, 29]. In the present
case, the magnitude of the electric field is proportional to r ≡ |̂q| = |q| (the gradient of q2).

3.2. Dynamical group symmetries

Some dynamical symmetries can be constructed for the harmonic oscillator in (3 + 1)-
dimensions. To this end, let us assume that the quantum system is described by the vector-like
q̂i , p̂j (i, j = 1, 2, 3) noncanonical ‘internal’ coordinates. We assume that they satisfy the
commutation relations

[̂qi, p̂j ] = ih̄δij
(̂
I +

χ

h̄ω
Ĥ

)
≡ ih̄δij Ô, (18)

in which Ĥ is the Hamiltonian of the system, χ is a dimensionless real constant and ω is
the frequency of the oscillator. For a harmonic oscillator we have to adjoin the commutation
relations

d̂qj

dt
= i

h̄
[Ĥ , q̂j ] = p̂j

m0
,

dp̂j

dt
= i

h̄
[Ĥ , p̂j ] = −m0ω

2q̂j . (19)
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Now we look for a dynamical symmetry (a Lie algebra) associated with this system.
Jacobi’s identity for the triad q̂i , p̂i , q̂j (i �= j) is

[[̂qi, p̂i], q̂j ] + [[̂qj , q̂i], p̂i] + [[p̂i , q̂j ], q̂i] = 0̂, (20)

with no summation on the i index. But from equation (18) [[p̂i , q̂j ], q̂i] = 0̂. Then,

[[̂qi, q̂j ], p̂i] = [[̂qi, p̂i], q̂j ] = ih̄[Ô, q̂j ]. (21)

However, from equation (19), [Ô, q̂j ] �= 0̂:

[Ô, q̂j ] = χ

h̄ω
[Ĥ , q̂j ] = −i

1

m0

χ

ω
p̂j �= 0̂ (22)

only from the fact that χ �= 0. This means that [̂qi, q̂j ] �= 0̂. Similarly, from the triad
p̂i , q̂i , p̂j we find that [p̂i , p̂j ] �= 0̂.

If we denote the generators of rotations for this system (i.e., the system’s angular
momentum components) by Ĵ k, k = 1, 2, 3, which satisfy angular momentum commutation
relations

[Ĵ i , Ĵ j ] = i�εijkĴ k, (23)

then

[Ĵ i , q̂j ] = i�εijkq̂k, [Ĵ i , p̂j ] = i�εijkp̂k. (24)

Next, the commutators [̂qi, q̂j ] and [p̂i , p̂j ] transform as pseudo-tensors under space rotations.
This can be seen by using Jacobi’s identity for the triad [[̂qi, q̂j ], Ĵ j ] (no summation on j ):

[[̂qi, q̂j ], Ĵ j ] + [[Ĵ j , q̂i], q̂j ] + [[̂qj , Ĵ j ], q̂i] = 0̂. (25)

Because [̂qj , J j ] = 0̂, from equation (25) we get

[[̂qi, q̂j ], J j ] + [[J j , q̂i], q̂j ] = 0̂, [[p̂i , p̂j ], J j ] + [[J j , p̂i], p̂j ] = 0̂. (26)

Thus, from equation (24) we obtain

[[̂qi, q̂j ], J j ] = i�εijk [̂qi, q̂j ], [[p̂i , p̂j ], J j ] = i�εijk[p̂i , p̂j ]. (27)

The only pseudo-tensor available here is just J k . Therefore, the solutions for the commutators
[̂qi, q̂j ] and [p̂i , p̂j ], which are compatible with equations (24)–(27), become

[̂qi, q̂j ] = iζ εijkJ k, [p̂i , p̂j ] = iξεijkJ k, (28)

where ζ and ξ are real constants (with clearly identifiable dimensions).
On the other hand, for the triad Ô, q̂i , q̂j (i �= j) we have

[[̂qi, q̂j ], Ô] + [[Ô, q̂i], q̂j ] + [[̂qj , Ô], q̂i] = 0̂. (29)

As [Ô, q̂i] ∝ p̂i , [̂qj , Ô] ∝ p̂j and [̂qi, p̂j ] = 0̂ (for i �= j ), then [[̂qi, q̂j ], Ô] = 0̂. Hence,
given the fact that [̂qi, q̂j ] ∝ Ĵ k , then

[Ô, J k] = [Ĥ , J k] = 0̂, k = 1, 2, 3. (30)

This means that J k are conserved quantities.
At this stage of the problem, one wonders what sort of relations there are among the

various real parameters χ , ζ , ξ , etc that appear in the theory. To this end, let us choose the
triad q̂ l , q̂m, p̂i . We then select equations (18), (19), (24), (28) to insert them (correspondingly)
into Jacobi’s identity

[[̂ql, q̂m], p̂i] + [[p̂i , q̂l], q̂m] + [[̂qm, p̂i], q̂l] = 0̂, (31)

we obtain

ζ εmlkεkik′
p̂k′ − h̄χδil p̂m + h̄χδmip̂l = 0̂. (32)

If m = 1, l = 2, and then making i = 2, we get ζ = −χ/ω.
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Following the same steps as above but for the triad p̂l, p̂m, q̂i , we find that ξ = −χm0ω.
Therefore, if χ ≷ 0, then ζ ≶ 0 and ξ ≶ 0. That is to say, ξ = m0ω

2ζ .
Hence, the required commutation relations are

[̂ql, q̂m] = −i
χ

ω
εlmkĴ k, [p̂l, p̂m] = −i

χω

m0
εlmkĴ k. (33)

To sum up, the (order 10, rank 2) Lie algebra generated by q̂i , p̂j , Ĵ k and Ĥ is given by
the commutation relations

[̂qi, p̂j ] = ih̄δij
(̂
I +

χ

h̄ω
Ĥ

)
, (34)

[Ĥ , q̂j ] = −ih̄p̂j , [Ĥ , p̂j ] = ih̄m0ω
2q̂j , (35)

[̂qi, q̂j ] = −i
χ

ω
εijkJ k, [p̂i , p̂j ] = −i

χω

m0
εijkĴ k, (36)

[Ĵ i , Ĵ j ] = i�εijkĴ k, (37)

[Ĵ i , q̂j ] = i�εijkq̂k, [Ĵ i , p̂j ] = i�εijkp̂k, (38)

[Ĥ , Ĵ k] = 0̂. (39)

Formally, if χ �= 0, the central term ih̄δij Î in equation (34) can be reabsorbed into Ô and
is mathematically unimportant for a finite-dimensional semisimple Lie algebra. However,
we must distinguish the nature of the symmetry algebra according to the values that the
real parameter ‘χ ’ can have. There are three possible cases: (a) if χ → 0 and ω → 0
with (χ/ω) → h̄/mc2, leading to the important case of the Poincaré algebra in (3 + 1)-
dimensions. Additionally, the case χ → 0 leads to the (isotropic) harmonic-oscillator algebra
in 3-dimensions, also known as the Newton–Hook algebra [30], the Heisenberg algebra being a
subalgebra of it. Here ih̄δij Î is the non-trivial center of the algebra and it cannot be eliminated.
(b) If χ < 0, this symmetry corresponds to the compact Lie algebra so(5). The generators
q̂i , p̂j , Ĵ k and Ĥ are traceless. This quantum model can be applied, for instance, to the
study of the electron Zitterbewegung [3]. In this case then ω = ωZitt = 2m0c

2/h̄. (c) If
χ > 0, the generated symmetry becomes the non-compact Lie algebra so(3, 2). This algebra
can be studied, for example, from the point of view of Dirac’s representation [18]. This
representation could be applied to the study of some hadron resonances [19] in the context
of Regge trajectories. We recall here some early works which describe different systems of
harmonic oscillators in terms of dynamical symmetry [20, 21]. Actually, there is an extensive
(modern) literature on harmonic-oscillator models based on the dynamical algebra so(3, 2)

(see for instance [22–25]).
These Lie algebras are well known, particularly so(5), so we are not going to get involved

at present into the discussion of the (energy) spectrum of Ĥ in terms of the eigenvalues of,
say, J3, etc. It is enough to say that it is possible to find closed results, according to the
representation we use to describe the system in each case.

3.3. Canonical coordinates

Incidentally, we consider a general quantum system described by canonical coordinates Q̂ν

and P̂ µ satisfying the Heisenberg algebra [27]

[P̂ µ, Q̂ν] = ih̄Igµν, (40)
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with the metric signature g(+−−−), where I ≡ In×n ⊗I represents an n-block identity matrix
such that we may realize these operators in the general form

Q̂ν = η̂q̂ν ≡ η̂ ⊗ q̂ν, P̂ µ = η̂p̂µ ≡ η̂ ⊗ p̂µ, (41)

where, in coordinate representation, p̂µ = −ih̄∂/∂qµ. Here, η̂ is a constant n × n Hermitian
matrix satisfying η̂2 = In×n. Thus we can define a label | Tr(̂η)| associated with each
representation of the Heisenberg algebra (40), with n � | Tr(̂η)| � 0. Representations
satisfying |Tr(̂η)| = n correspond to the usual ones (̂η = In×n) where Qν, P µ are reducible
operators for n � 2.

The Hilbert space is defined as L2(R3) ⊗ C
n. It consists of n-component column vectors

where each component ψi is a complex-valued function of the (3 + 1)-dimensional (flat)
spacetime coordinates q, t. The coordinates Q̂i(i = 1, 2, 3) consist of three self-adjoint
operators. The momentum operator P̂ j = −ih̄̂η∂/∂qj is defined as the Fourier transformation
of the position operator Q̂j .

Minimal interactions can now be introduced by means of the prescription P̂ µ →
P̂ µ − gÂµ, where g is the coupling constant, Aµ is a gauge field (µ = 0, 1, 2, 3). Note that
here P̂ 0 = ih̄In×n∂/∂q0. This is the basis of the so-called gauge principle whereby the form of
the interaction is determined on the basis of local gauge invariance. The covariant derivative
Dµ ≡ (i/h̄)(P̂ µ − gÂµ) turns out to be of fundamental importance to determine the field
strength tensor of the theory. It will be the operator which generalizes from electromagnetic-
like interactions.

It is well known that the expression for the relativistic energy may be used to form the
classical free-particle Hamiltonian. The analogous quantum mechanical expression could be
constructed by replacing the classical momentum p with its quantum mechanical operator p̂,
with components p̂i = −ih̄∂/∂qi , which produces the spin-0 free-particle wave equation(

c2p̂2 + m2
0c

4
)1/2

�(q) = cp̂0�(q) = ih̄
∂

∂t
�(q). (42)

As is well known, this equation does not satisfy some of the conditions required by special
relativity. The wave equation is not covariant, and the square root term introduces ambiguity.
The Klein–Gordon equation (KGE) solves both of these problems simply by taking the square
of the original energy expression and extending the result to a quantum mechanical wave
equation: (

gµνp̂
µp̂ν − m2

0c
2
)
�(q) = 0, (43)

where p̂µ = −ih̄∂/∂qµ [26]. The resulting wave equation is covariant, but suffers from other
problems. Negative energy solutions to this equation are possible, which do not have a readily
obvious explanation. Besides, the probability density �∗� fluctuates with time.

The expression in equation (43) is still valid if we make the replacement p̂µ =
−ih̄∂/∂qµ → P̂ µ = σ1p̂

µ, with σj=1 a Pauli matrix, so that(
m2

0c
4 − P̂ j P̂j

)
�(q) = (P̂ 0)2�(q) = (

m2
0c

4 − p̂j p̂j

)
�(q) = (p̂0)2�(q), (44)

since [p̂i , σj ] = 0̂ and σ 2
j = I2×2. Note that � is now a two-component wavefunction, that is

to say, the Hilbert space has been enlarged. Pauli matrices σj satisfy the well-known relations

{σi, σj } = 2δij , σ 2
j = I2×2, i, j, k = 1, 2, 3, σiσj = iσk cyclically. (45)

Next we briefly discuss the interaction of a basic effective minimal coupling between
spinless quarks [31]. Let

P̂ 0 → �̂0 = ih̄cσ1∇0 −
⎛⎝σ2

√
−a2

1

r
+ a2σ3

√
r

⎞⎠ , (46)



14884 S A Bruce and P C Minning

P̂ k → �̂k = ih̄σ1∇k − a3σ2
qk

r
(47)

be a minimal replacement in the KGE, with a1, a2, a3 real constants. If we introduce the
minimal coupling P̂ µ → �̂µ into equation (44) and divide the resulting equation by 2m0c

2,
we get{

− h̄2

2m0
∇2 −

(
a2

1

2m0c2
− 2h̄a3σ3

)
1

r
+

a2
2

2m0c2
r

+
1

2
m0c

2

(
1 +

(
a3

m0c2

)2
)}

�(q) = − h̄2

2m0

∂2

∂t2
�(q). (48)

Note that �̂0 is not Hermitian. However when placed into the KGE, each piece becomes in fact
Hermitian. This feature also takes place in the Dirac oscillator definition [12]. Rearranging
terms in equation (48) we obtain the relativistic wave equation(

− h̄2

2m0
∇2 − α

r
+ kr

)
�(q) = εKG�(q), (49)

with

εKG ≡ 1

2
m0c

2

((
EKG

m0c2

)2

−
(

a3

m0c2

)2

− 1

)
, α ≡ a2

1

2m0c2
− 2h̄a3σ3, k ≡ a2

2

2m0c2
.

(50)

Of course, in this example we are not dealing with electromagnetic-like interactions.
Note that equation (48) has been obtained (as a minimal coupling) within the framework of a
relativistic equation. Furthermore, for the free particle (a1 = a2 = a3 = 0) the limit |̂p| → 0
yields

εKG = 1

2
m0c

2

((
EKG

m0c2

)2

− 1

)
→ 1

2
m0c

2

⎛⎝((
c2p̂2 + m2

0c
4
)1/2

m0c2

)2

− 1

⎞⎠ → p̂2

2m0
, (51)

as one should anticipate. Thus, we reacquire the nonrelativistic expression for the kinetic
energy.

We also have that

F 0k ∝ [�̂0, �̂k] = −ih̄

(
a2σ2 +

1

2

a1

r3/2
σ3

)
q̂k, (52)

F ij ∝ [�̂i, �̂j ] = −ia3
σ3

r
Lk, i, j, k cyclically. (53)

Note as well that in this case

[A0, Ak] = −2ia2a3
qk

√
r
σ1 �= 0̂, (54)

so that the vector potential Aµ is not Abelian. In QCD, the strong color field is mediated by
massless vector bosons. Hence, the potential might be expected to be of the Coulomb form.
At large r, the quarks are subjected to confining forces. It is found that the potential at large
r is linear [31]. We are not going to solve here the eigenvalue problem (49), since it has been
widely studied in the context of the (nonrelativistic) Schrödinger equation [2]. Note that this
basic model by no means solves the general problem of, for instance, heavy quarkonia in the
relativistic quark model [32].
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4. Conclusions

This paper deals with some possible applications of particular harmonic-oscillator-like models
to particle physics in the framework of certain noncanonical commutation relations. We have
presented specific types of harmonic oscillators in order to study mathematical relations
among well-established symmetries in physics such as supersymmetry, quark interactions
and particle–antiparticle symmetries. It remains to be given a more solid foundation for
this portrayal. For instance, if one wants to be meaningful, there is a need (a difficult one)
to incorporate various degrees of freedom existing in meson–quark physics, accounting for
physical effects such as retardation and radiative corrections, amongst others [32]. Perhaps
one way of particularly doing this is by formally generalizing equation (1) as

[̂qi, p̂j ] = ih̄δij (̂I + f (Ô1, . . . , Ôn)), (55)

where f (Ô1, . . . , Ôn) is a power series function of the constant n-compatible observables
Ôj of the system, i.e., they commute with the Hamiltonian and with each other. Actually, at
present our research is directed to extract information from equation (55) for simple systems
in (3 + 1)-dimensions, where a somehow judicious form for the function f is to be set.
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